无极小说吧 > 10万个为什么大全集 > 第四辑 物理(2)
夜间

10万个为什么大全集

        

为什么乘客在飞机降落时要嚼口香糖


        

有一位乘客是第一次乘坐飞机。飞机着陆前,空中小姐给每位乘客发放口香糖,说是要避免着陆时耳膜胀裂。着陆后,那个头一次乘坐飞机的乘客对小姐说:“对不起,你能告诉我怎样将耳中的口香糖取出来吗?”小姐奇怪地问:“口香糖为什么会进到你的耳朵里呢?”乘客回答:“你不是说口香糖可以防止耳膜胀裂吗?”小姐听后啼笑皆非:“我是让乘客们嚼(jiáo)口香糖,并不是让你把口香糖贴在耳膜上啊!”


        

笑话讲完了,可是嚼口香糖真的可以防止耳膜胀裂吗?


        

让我们首先搞清楚在飞机着陆时耳朵为什么有可能被胀裂。人耳分为外、中、内耳三部分。外耳和中耳通过它们之间的一层不足1/10毫米厚的薄膜相隔,这就是鼓膜,至于真正能感受声音的,则是内耳和听觉神经。当声波传来时,鼓膜最先受到震动,接着震动就由鼓膜传给中耳,最后传入内耳。


        

在飞机起飞或降落时,因为有竖直方向的加速度,舱内的气体由于惯性作用相对飞机会向下或向上运动。飞机起飞时,机舱内的气体相对飞机向下部沉降,这时,机舱底部的压强将增大,上部的压强将减小。同样,飞机着陆时,相对飞机气体向上部涌去,这时,机舱顶部的压强会增大,而下部的压强将减小。


        

在飞机加速起飞和着陆过程中,鼓膜的外表受外部气压的作用,而这一压强是变化的。


        

如果人闭紧嘴巴,那么,闭合的咽喉、声门到口腔、鼓膜间形成一个封闭系统,其压强不能随外部气压迅速变化。起飞时,外部压强大于内部压强,鼓膜就要向内凹人;反之,着陆时外部压强小于内部压强,鼓膜就会向外凸出。这样,耳朵都会有鼓胀感。当鼓膜受到的张力超过鼓膜所能承受的极限时,鼓膜就会破裂。因此乘机时嚼口香糖可以缓解压强防止耳膜胀裂。


        

知识点:耳膜、外耳、中耳、内耳、听觉神经、压强


        

为什么比萨斜塔没有倒塌


        

世界上最有名的斜塔是意大利的比萨斜塔,物理学史上有名的伽里略发现自由落体定律的实验就是在这里进行的。


        

比萨塔并不是人们有意造成现在这样的斜塔的。但是,由于地基松软等原因,自从建成以后,比萨塔就开始倾斜,几百年来,倾斜得越来越厉害。但是,比萨斜塔并没有倒塌。那么,比萨斜塔为什么没有倒塌,会不会倒塌,什么时候倒塌?


        

原来,物体不倾倒,必须使整体保持静态平衡,作用在物体重心的重力作用线一定要落在物体的基底面积内。如果通过重心的重力作用线越出基底,马上就会失去平衡,导致物体的倾倒。


        

比萨斜塔之所以还没有倒塌,正是由于它的重力作用线还在其基底范围内;如果比萨斜塔继续倾斜下去,那么有朝一日,比萨斜塔终究会倒塌的。


        

为了挽救比萨斜塔,世界上的科学家提出了各种方案。我国科学家提出,在塔倾斜方向的反方向的地基上,灌注大量的水泥,这样可以将比萨斜塔的重心向反方向移动,从而使塔身不再继续倾斜,甚至矫正塔身。


        

杂技表演中的演员在斜摞(luò)着的椅子造型上做各种表演,能够保持平衡而不至倒掉,利用的是同样的道理,也就是说,不论多少个演员或多少张椅子,演员和椅子的合重心的重力作用线一定要落在椅子四脚所围成的基底的面积内。


        

知识点:地基、倒塌、静态平衡、重力作用线、基底


        

高空走索的表演者为什么


        

会拿着一根长长的竹竿


        

高空走索是一项非常惊险又极具观赏价值的表演项目,20世纪90年代,加拿大高空走索表演者科克伦在我国三峡地区首次高空走索跨过了长江。维吾尔族达瓦兹(维语:高空走索)艺术世家的传人阿迪力在缺乏资金和没有媒体关注的不利情况下,以大大少于科克伦的时间再次走索跨过了长江。阿迪力一家还多次在全国民运会和各种节庆活动中表演了达瓦兹,赢(yíng)得了观众们的喝彩和敬佩。


        

观看高空走索,观众们看到表演者在很细的绳索或钢丝上如履(lǚ)平地,还能轻灵敏捷地做出各种惊险优美的动作,会紧张得透不过气来,但表演者不用保险绳的保护却不会从绳索上摔下来,这是为什么呢?而且,表演者还要拿着一根长长的竹竿或长棍子,这根长竿难道不会妨碍他做动作吗?


        

与人们的想象相反,表演者手里拿的长竿,不仅不会妨碍表演者做动作,恰恰是使他保持平衡、不易从绳索上掉下来的关键。


        

我们知道,不论什么物体,要保持平衡,物体的重力作用线(通过重心的竖直线);必须通过支面(物体与支持着它的物体的接触面),如果重力作用线不通过支面,物体就会倒下。


        

根据物体平衡的条件,就要求高空走索演员,要始终使自己身体的重力作用线通过支面——悬空的绳索。由于绳索很细,对人的支撑面极小,一般人很难让身体的重力作用线恰巧落在绳索上,随时有从绳索上掉下的危险。手中的长竿可以左右摆动,以调节身体的重心,将身体的重力作用线调整到绳索上,使身体重新恢复平衡。我们有这样的经验,当身体摇晃即将倒下时,我们会下意识地摆动双臂,使身体重新站稳,这是我们依靠摆动双臂来调整身体的重心。杂技演员走钢丝时,也会通过摆动手臂的方法保持平衡。同样道理,高空走索表演者手里拿的长竿,实际充当了延长的手臂的作用,还有长杆转动惯量大,可以有效地帮助表演者在空中保持平衡。


        

知识点:惊险、平衡、重心


        

为什么医生可以使用听诊器


        

诊断病人患了什么病


        

人们得了病,去医院看病,医生就会用挂在脖子上的听诊器贴在你的胸前背后,仔细地听着什么。他到底能听到什么呢?


        

观察一下,会发现听诊器贴在你身体上的部分是一个圆形的蒙着金属薄膜的小圆盒,它连在一段空心橡胶管上,靠近医生两耳的部分是两条金属腿。听诊器为什么要用这样的材料制成呢?


        

原来,人在得病时,身体各部分会产生某些变化,比如肺里有杂音,或心脏跳动不规律,有时候胸腔或腹腔还会有积水。通过听诊,可以听到这些身体中的变化。


        

最初医生是通过将耳朵贴在病人身体上的办法来听诊的,但这样做既不卫生效果也不十分理想。后来,人们发明了听诊器解决了这个问题。


        

关于听诊器发明的一个传说是:一个医生偶然在公园里看到两个孩子用一段树枝贴在长椅上仿佛听着什么,医生好奇地模仿着孩子们的动作,令他十分惊异的是:声音比平时听起来要响得多,而且清楚得多,他于是便用空心木管做了一只听诊器。后来,人们改用金属来做听诊器,听诊器逐渐变成了我们现在所熟知的样子。


        

为什么听诊器要用金属制成呢,我们已经知道,声音在固体中传递的能力比在空气中强,所以利用金属可以更清楚地听到身体内部发出的声音,并根据声音的不同判断出身体里出现的毛病。


        

同样道理,工厂里经验丰富的工人师傅把螺丝刀放在运行的机器上,将耳朵贴在螺丝刀上仔细听,也可以通过机器发出的声音判断机器是否正常。


        

知识点:杂音、声音、变化、金属


        

为什么噪声也是一种污染


        

现在环境污染已经越来越成为人们迫切关注的与人类生存密切相关的问题。如果问你,环境污染都包括哪些,你会提到废物、废水、废气等污染,但你是否知道声音也有可能成为一种污染呢?这就是噪声污染,而且是比其他污染更加危险的污染。


        

人们最早意识到噪声污染,是在20世纪50年代以后,喷气式飞机特别是超音速飞机出现后的事情。住在机场附近的居民被飞机突破音障(飞机速度超过音速时空气阻力对飞机形成的一种无形的障碍)时所产生的巨大的轰鸣声搅得头疼、耳鸣、神经衰弱。


        

噪声会对人产生一种不愉快的有刺激性的影响。强噪声对人长时间作用,能引起听力暂时丧失,在严重的情况下,能引起听力全部丧失。人们最早注意到噪声污染的除了飞机噪声外,还有就是同金属冶炼和金属加工有关的工厂噪声,建筑和市政施工的噪声(如扔钢筋的声音、混凝土捣固机的声音、气钻的声音等),以及汽车干线附近的噪声。但是,现在人们已经知道,实际上在我们周围的一些环境噪声的危害比上面所说的更大。如夜深人静时水龙头的漏水声、锅铲刮锅的声音、摇滚乐队和重金属乐队的演奏声、音乐会上歌迷们狂热的尖叫声、家庭音响的低频振动等。


        

噪声同污染的空气和水一样对人体健康产生危害。如果对于过度的噪声没有防护,人就可能造成心理上和生理上的破坏。噪声会造成心理异常,首先是引起失眠,妨碍人们入睡,或使人从梦中惊醒;噪声还有可能引起人神经和心理上的疾病,如使人烦躁不安,具有攻击倾向;过响的声音会妨碍人与人的交往,如影响说话、打电话等;噪声会使劳动生产率降低;生理上的影响,除了会造成听力衰退、暂时性耳聋和永久性耳聋外,还可能引起高血压等疾病。


        

正因为噪声污染是一种非常危险的环境污染,所以人们已经开始重视噪声污染的防治工作。


        

知识点:环境污染、声音、刺激、心理异常、听力


        

为什么隐形飞机可以逃过雷达的“眼睛”


        

普通飞机往往很难逃过雷达的“眼睛”,但是有一种飞机却可以躲过敌人的雷达监视系统,突然出现在所要打击的敌方军事目标上空,迅速摧毁敌人的飞机、机场甚至雷达系统。由于这种飞机不容易被雷达等监视系统侦察到,就像故事中的隐身人不会被人看到一样,因而这种飞机被称做隐形飞机。


        

为什么隐形飞机能够逃过雷达等监视系统的侦察呢?


        

首先,让我们先来看一看雷达等现代监视系统的工作原理。尽管这些监视系统形式多样,性能各异,但都是利用了波,即光波、声波和电磁波的功能。雷达、主动红外探测仪等只有自身发射短波、微波或红外线,然后再接收被测物的反射才能发现目标;而被动红外探测仪和各种光学、声学、目视观察等,则必须利用目标所发出的各种波。切断了波的来路,这些监测系统就成了瞎子或聋子了。


        

找到了雷达等监测系统的弱点,隐形飞机在设计上,便在波的吸收和防反射、防发射上大做文章。首先,要尽量减少机身对波的反射。雷达等主动式监测系统所发出的波主要通过两种形式循原路反射回去:一是垂直入射的镜面反射,二是直角形表面的折曲反射。针对这个特点,隐形飞机的机身、机翼、尾翼等均融为一体,各部分之间全部采用平滑过渡;发动机进气道由圆筒改为蛇形管,以减少风扇叶的反射;驾驶舱挡风玻璃向后倾斜,并涂敷透明金属膜,以减少射向舱内的透射波,并使反射散逸开去。其次,在飞机材料的选择上,将机身上涂敷高吸收率的材料,目前主要有结构型复合材料和涂料型粉末材料。前者为多孔形松散结构,使入射波在微孔中反复振荡而衰减;后者是通过材料与电磁波间的各种电磁作用,使电磁波转变为热而散失掉。涂敷隐形材料的机身和防反射系统结合在一起,就使雷达发出的入射波不能被反射回去,从而使雷达等主动监测系统和光学侦察系统致盲。第三,尽可能降低飞机自身辐射。发动机的隆隆声响,高温部件和高温喷射气流所发出的大量红外线,是被动式监测系统追寻的目标。隐形飞机采用高效、低热、低噪声的发动机,并且在发动机上敷设吸热、消声装置。喷气尾管做得很长,并采用“百叶窗式”换热结构以充分利用机外冷空气降温,使喷出气体的温度降至很少发射出红外线的程度。


        

采用以上措施设计和制造的隐形飞机,可以比较有效地减少各种波的反射和发射,因而可以隐蔽地接近敌人而不被发觉。但这种飞机造价极高,所以目前只有美国空军装备了隐形飞机。而且,隐形飞机也并不能完全不反射、不发射波和红外线,所以,各国在研制隐形飞机的同时,也在研制反隐形雷达。


        

知识点:侦察、工作原理、波、反射


        

为什么录音机里自己的声音


        

听起来感到陌生


        

将你说话的声音录下来,然后,用录音机放出来,你会感到那声音听起来非常陌生,好像不是自己的声音。这是为什么呢?


        

这是因为平时我们听到自己的声音,与录音机里放出的自己的声音,两者传递声波的方式不同。我们听外界的声音是通过耳朵感受的,空气的振动由耳膜传给听觉神经;而自己讲话的声音,主要是声带的振动通过颅(lú)骨传给听觉神经的。这样,两者的音色不同,引起的声觉也就不同。平时,我们没有机会听到只通过空气传给耳朵的自己的声音,而录音磁带录下的就是通过空气传递的声音,所以在用录音机放自己的声音时,会有陌生的感觉,但旁人平时就是听的与录音相同的声音,所以不会有异样的感觉。


        

知识点:声波、耳膜、听觉神经、音色


        

为什么热气球能够翱翔蓝天


        

在人类的航天器家庭中,有一类航天器,被称做热气球。


        

最早的热气球是公元3世纪时我国三国时期的诸葛亮发明的,它是用纸做的正方形灯笼,它的上方和前后左右都糊着纸,靠近地面的一面不糊纸。将灯笼放在燃烧的火上,并使灯笼底边与地面完全接触,在灯笼内部形成一个封闭的空间,避免热空气的逃逸。待灯笼中的空气被加热,松开灯笼,灯笼便会飞上天去。由于诸葛亮表字孔明,所以这种灯笼被称做“孔明灯”。


        

人类历史上第一次载人热气球飞行,是在1783年11月。法国蒙格尔费兄弟利用充满热空气的布囊将人升入空中。现代热气球是开放式的,与普通气球不同,球里并不充氢、氦等气体,而是普通的空气。它由球囊、燃烧器、吊篮、贮气瓶、鼓风机以及仪表等组成。


        

操作时,先用鼓风机向球内吹入空气,使球囊膨胀,当球囊膨胀到一大半时,开始用燃烧器从气囊下端开口处对空气加热,空气受热膨胀,气囊被热空气膨胀到足够大。此时,球内热空气密度比球外的小,浮力就大于重力,于是在球外空气浮力的作用下,热气球带着吊篮等装置慢慢上升。由于热气球是无动力飘浮,它在空中主要随风飘移,升空高度由燃烧器加热情况决定,一般高度可达几十至几百米,操纵比较容易。降落时依风向选择好合适的地方,关闭燃烧器,让球内的热空气冷却,气球就缓缓下降;着陆后要立即打开气囊上的排气阀,排空球内的空气。


        

利用热气球可以进行竞技比赛、运输、探险等活动。最为惊;险刺激的是有人用热气球进行蹦极跳跃;还有人尝试乘热气球不间断地环绕地球飞行,但由于复杂多变的天气等原因,迄今尚未取得成功。


        

知识点:热气、鼓风机、无动力、操纵


        

为什么不能用啤酒杯喝开水


        

用来喝啤酒的大口玻璃杯,杯身厚实,倒入啤酒后,黄色的啤酒与透明的杯子相映生辉,煞是好看,喝酒时鼻子紧贴杯口,可以嗅到啤酒花的清香。但你用它来喝开水,结果就会发生意想不到的事情——啤酒杯炸裂了。为什么普通的薄玻璃杯不易炸裂,而厚厚的啤酒杯却会炸裂呢?


        

实际上,问题正出在啤酒杯厚厚的杯壁上。因为玻璃是热的不良导体,若往杯里倒开水,则杯子的内壁受热即刻膨胀,而壁较厚的杯子,热量一下子不能传到外壁,外壁一时还未膨胀,这时,由于应力的作用,杯子便会炸裂;而薄的玻璃杯,倒人开水后,热量几乎同时传递到玻璃杯的外壁,使内外壁温度很快达到平衡而同时膨胀,应力小,就不易炸裂。所以,我们不能用啤酒杯或罐头瓶来喝开水,它们很容易炸裂。同时,我们在商店挑选玻璃杯时,也应注意挑选那些杯壁和杯底较薄的杯子,它们相对于较厚的杯子来讲,比较不易炸裂。


        

当然,即使是较薄的杯子,由于各部分受热不均匀或内部结构缺陷,也有炸裂的可能,特别是在寒冷的冬天。为了避免这种事故的发生,可以采用以下的办法:在杯子中放入一把金属汤匙,倒入开水时,会把一部分热量传给金属汤匙,使开水的温度降低,这样就可以使杯子里受热不均匀的情况得到缓和;也可以先在杯中倒入少许热水,并倾斜杯子使水在杯子里晃一晃,这样可以使杯子预热,再倒入大量沸水时,由于杯子各处已均匀受热,所以就不会炸裂了。


        

知识点:炸裂、杯壁、导体、结构


        

为什么冬天会感觉铁比木头冷


        

我们都会有这样的经验,冬天,我们用手去摸铁和木头,会感觉到铁制物品比木制物品冷得多。为什么会产生这样的感觉呢?你可能会说:因为它们的温度不同嘛!


        

果真如此吗?让我们用温度计来测量一下铁制物品和木制物品的温度,温度计的读数告诉我们,二者的温度完全相同。


        

原来,这是因为铁传热比木头要快得多,物体传热能力高低与这种物质的导热系数有关,导热系数高的物质传热快,导热系数低的物质传热慢。铁比木头的导热系数高,也就是说,铁传热的速度要比木头传热速度快得多。


        

冬天,我们摸着铁制物品时,由于铁的传热能力强,我们手上的热量很快就传到铁制物品上了;而摸着木制物品时,由于木头的传热能力差,手上的热量传走得慢。所以,我们会感觉铁比木头冷得多。


        

原来,我们感觉到铁比木头冷得多,是由于手上的热量传递到铁上更快的缘故,并不是因为铁和木头的温度不一样。


        

也正是由于导热能力的不同,在夏天情况刚好与冬天相反,当周围温度比人体温高时,因为铁传热快,铁制物品的温度很快会传导到手上,所以在夏天时会感觉铁比木头热得多。


        

知识点:温度、传热、导热系数


        

哈哈镜为什么会使人变形


        

哈哈镜跟我们日常用的镜子不同。我们习惯的镜子,镜面很平,照在镜子里的像不会变形,大小比例也不会变。但是照哈哈镜就不同了,我们会变得又高又瘦或又矮又胖等各种各样奇异的图像,非常可笑。人们见到自己变成这个模样,都会忍不住地哈哈大笑,由此,人们将这种镜子叫做哈哈镜。


        

哈哈镜的镜面不是平面的而是曲面的,有的哈哈镜的镜面还是波浪形的,有的商场里的又高又粗的柱面镜也可以看做是一种哈哈镜。


        

当我们站在商场中的这种柱面镜前,会看到自己变得又高又瘦。那么这种图像是怎样形成的呢?我们可以试想一下,通过镜面上任意一点,作两个互相垂直的截面。一个截面通过圆柱轴线,是竖直的;另一个截面是水平方向的。这样,前一个截面在镜面上得到一条垂线,后一个截面在镜面上得到一个圆。


        

这样,在镜子的垂直方向的成像规律相当于一个平面镜,而在水平方向上相当于一个球面凸镜。平面镜能形成一个等大正立的虚像,凸镜则能形成一个正立的缩小的虚像。这样,在镜子里你的像,身体宽度缩小了,但高度没有变,就好像被挤瘦了。


        

其他的哈哈镜,都可以认为它们的镜面是柱面的一部分。如放倒的柱形柱面镜,我们看到的像正好与前面的相反,是又矮又胖。道理与刚才的一样,只不过水平方向相当于平面镜,而竖直方向相当于球面凸镜的成像规律。


        

照那种曲面的哈哈镜时,凸出来的部分相当凸面镜,照出来的像是正立缩小的。凹下去的部分相当凹面镜,人站得较近的时候;照出来的像是正立放大的;若离得较远时,是倒立缩小的。在哈哈镜上,人像的正常比例受到破坏,就会出现了一个可笑的形象,人们就会忍俊(jùn)不禁。


        

知识点:图象、镜面、曲面、凸面、凹面


        

为什么人在看东西时会觉得


        

近处的东西大,而远处的东西小呢


        

同样高的树木,在人眼看来近处的大而远处的小,远处的高楼看起来比眼前的二层楼还低,你知道这是为什么吗?


        

原来,人眼睛的水晶体就像一个凸透镜,视网膜相当于像面。若想看清某一物体,就必须使它的像落在视网膜上。从人眼瞳孔中心对物体的张角叫做视角,视角的大小决定视网膜上物体的像的大小。同样高的两棵树,离眼睛近的那棵树,它的视角比远处那棵树的视角大,在视网膜上近处的树的像就会比远处的树的像大,因此,近处的树看起来比远处的大。


        

但是,当物体离得太近或太远的话,人眼也会看不清的。这是由于人看东西是要靠眼睛的水晶体的调节,而水晶体的调节也是有限度的。当眼睛里的肌肉完全放松时,水晶体的两个曲面的曲率半径最大,这时若远处物体能在视网膜上成像,这个物体到眼睛的距离就被称为远点。如果物体在远点之外,人眼就看不清了。当物体接近人眼时,为了能看清物体,人眼必需调节水晶体,挤压水晶体使水晶体曲率半径变小,以使物体能在视网膜上成像。当物体拉近到一定距离时,曲率半径已不可能再变小,此时该物体到眼睛的距离就被称为近点。若物体到眼睛的距离比近点还短时,人眼也会看不清该物体了。


        

由于人在视物时会有近大远小的效果,所以西洋画家在绘画中发展了“透视”画法,在画面中,将近处的人和物体画得较大,而将远处的人和物体画得较小,这样做,可以较为逼真地反映出观察者的主观视像,从而在二维平面上画出三维立体景象。


        

知识点:眼睛、水晶体、视网膜、视角、透视


        

为什么汽车的雾灯要用黄色光


        

大雾弥漫的天气,驾驶车辆在道路上行驶很不安全,于是驾驶员都打开车头上设置的雾灯。雾灯是黄色的,它能透过浓雾,照亮前方道路,并且标明自己所在的位置,避免与迎面而来的行人、车辆发生碰撞。


        

雾灯不用醒目的红光而用黄光是有科学道理的。雾灯的光必须要有散射的作用,使照射出去的光尽可能向前方散布开来,使迎面来的车辆和行人既看清目标又不刺眼。光有一个特性,波长越短的光,越容易被散射。黄光的波长比红光的波长短三分之一,散射强度是红光的五倍。由此可见,采用黄光作为汽车雾灯的光色,比用红光效率高的多得多。


        

黄光不仅用在汽车雾灯上,日常生活中也能看到它的特殊应用。例如城市道路的十字路口,深更半夜,交通指挥灯停开了,而路中央有一盏黄灯一闪一闪地发出光芒,使驾驶员在很远的地方就能发现,以便及时降低车速,安全驶过路口。


        

那么比黄光波长更短的绿光、蓝光和紫光为什么不用呢?绿光已被公认为“允许许通行”和“安全”等的标志光,常见的就有城市道路上的交通灯、铁路用的号志灯和公共场所出口标志灯等;蓝光和紫光的光色不够明亮,而且与自然环境傍晚、黎明或阴雨天的天空颜色十分接近。既然它们有这样那样的不足之处,就选择了散射性能比它们稍差一些的黄光作为汽车雾灯的灯光颜色。


        

知识点:散射、绿光、紫光、性能


        

为什么修筑在山上的公路都是弯弯曲曲的


        

汽车要从山脚往上开,不可能笔直地开上去,总是沿着弯弯曲曲的盘山公路盘旋而上。这样,汽车开起来不仅比较安全,而且更加省力。


        

我们都有这样的生活经验:走路或骑自行车从低处往高处走,比在平地上吃力;爬陡的斜坡,又要比爬坡度小的斜坡费劲。所以,在爬斜斜坡时,人们总是想办法将斜坡的坡度变得小些。对于一定高度的斜坡来说,斜坡的斜面越长,坡度就越小。因此,人们往往利用长斜面的方法来减小坡度,达到省力的目的。


        

比如,推着装重物的车子上坡时,如果是笔直地往上推,人会觉得很吃力。而有经验的人,往往是弯来弯去沿着S形向上推。这样,虽然多走了一些路,但可以少花很多力气。沿S形上坡,就是使和斜面变长,坡度变小。


        

还有一个例子,在高大的桥梁两端,都有长长的引桥,有时候,还将引桥造成螺旋形。这都是为了减小桥的坡度,而将桥面伸长。


        

知识点:坡度、长斜坡、省力


        

为什么不弯腿就跳不起来


        

如果有人问你,能不能不弯腿就跳起来,你可能一下子答不上来。那么现在就试一试吧。你会发现不弯腿根本跳不起来,浑身的劲就像没处使似的。这是什么道理呢?


        

因为,在一般情况下,物体的运动都是遵循一定的客观规律,这就是牛顿定律。其中牛顿第三定律告诉我们:物体甲给物体乙一个作用力时,物体乙必须同时给物体甲一个反作用力,作用力和反作用力大小相等,方向相反,且在同一条直线上。比如拍手的时候,右手给右手一个力,左手同时也给右手一个力;桌上放一本书,书对桌面有一个压力,同时,桌面对书也会产生一个支持力。它们都是作用力和反作用力。


        

我们要从地面上跳起来,必须要使地面对我们有一个作用力。怎样才能使地面对我们施加作用力呢?这就得先要我们对地面有个作用力。我们弯腿、下蹲,然后向上跳,就是在调整腿部肌肉,使肌肉收缩对地面施加力,这样,地面就会同时对我们产生向上的反作用力,借助这个反作用力我们就跳起来了。腿部肌肉对地面的作用力越大,地面对我们的反作用力也越大,因此就跳得越高。如果不弯腿,腿部肌肉无法对地面产生作用力,地面也不会对我们产生反作用力,所以跳不起来。


        

知识点:弯腿、运动、规律、作用力、反作用力


        

远处的钟声,为什么在夜晚和


        

清晨听起来比白天更清楚


        

许多大城市都矗立着巨大的时钟,悠扬的钟声,向周围的人们准确地报告着时间。


        

你若细心就会发现:夜晚和清晨,钟声听上去很清楚,一到白天,钟声听起来就不太清楚了,有时甚至听不见。有人可能会说:这是因为夜晚和清晨的环境安静,而白天声音嘈杂。


        

这样的解释,只说对一部分,并不完全。另一个重要原因是声音会“拐弯”。


        

声音是靠着空气来传播的。它在温度均匀的空气里,是笔直地往前跑;一碰到空气的温度有高有低时,它就尽拣温度低的地方走,于是声音就“拐弯”了。


        

白天,太阳把地面晒热了,接近地面的空气温度远比空中高,钟声发出以后,走不多远就往上拐到温度较低的空中去了。因此在一定距离以外的地面上,钟声听起来就不清楚,再远一点,人们就听不见钟声了。夜晚和清晨,空气的冷热情况正好相反,接近地面的气温比空中低,钟声传出以后,就顺着温度较低的地面推进,于是,人们在很远以外也能清晰地听到钟声。看来,“夜半钟声到客船”还真有点科学道理哩!


        

声音的这种脾气,会造成一些有趣的现象。在炎热的沙漠里,地面附近的温度极高,如果在50-60米以外有人在大声呼喊,只能看见他的嘴在动,却听不到声音,这是由于喊声发出后,很快被拐到高空中去了。相反,在冰天雪地里地面附近的温度比空中低,声音全都沿着地面传播,因此人们大声呼叫时,能传播得远,甚至在1000-2000米以外也能听见。


        

有时,由于接近地面的空气温度忽高忽低,声音也会跟着拐上拐下,往往造成一些较近区域听不到声音,更远的地方反而能听到声音。1815年6月,在著名的滑铁卢铁役中,战斗打响以后,部署在战场25千米处的格鲁希军团竟无一人听到炮声,因此没能按作战计划及时赶来支援拿破仑。而在更远的地方,隆隆的炮声却清晰可闻。声音的传播性质竟影响到一个战役的胜败。


        

知识点:声音、空气、温度


        

为什么有的温度计里装酒精,有的装水银


        

温度计是用来测量温度的仪器。常用的温度计有水银温度计和酒精温度计。水银和酒精作为组成温度计的主要部件,被称为测温物质。测温物质能够用来测量温度,是因为它具有热胀冷缩的特点。随着温度的升高,水银和酒精的体积会明显地膨胀,在温度计中看到的就是水银柱或酒精柱的高度上升,这样,只要刻上适当的刻度,人们就可以读出相应的温度。


        

为了使温度计有更大的实用价值,测温物质应该具备两大特性:一是随温度变化而改变体积必须很灵敏,以至于可以测量细小的温度变化;二是低温测量温度时,测温物质不能凝固成固体,反之,在高温下,测温物质也不能变成气体,否则,就无法用来测量温度。


        

对于同样质量的水银和酒精,如果分别使它们的温度升高1℃,通过实验发现,酒精吸收的热量比水银吸收的热量大得多,前者大约是后者的20倍。因此,水银温度计中水银柱随温度改变的灵敏度比酒精温度计中的酒精柱大得多。在做科学实验或测量人体体温时,由于温度计吸收或放出的热量很少,但又必须显示出温度的改变,一般都采用水银温度计。而同样的温度变化下,酒精吸收热量多,膨胀能力大,因此酒精柱升降变化比水银柱显著得多。在测量周围空气温度和水温时,一般采用酒精温度计。


        

酒精和水银还有各自没的特性,酒精十分“耐寒”,它在-117℃才会凝固成因在体,而水银在-39℃就会凝固起来,失去流动性。在寒冷的北方,冬季气温达-40℃左右,因此,一般适宜用酒精温度计测量气温。但是,水银也有一个优点,它比酒精“耐热”,水银的沸点是356.72℃,而酒精到了78.3℃,就会沸腾而急剧汽化。在测量高温的场合,显然水银温度计比酒精温度计更有用武之地。


        

知识点:温度计、物质、热胀冷缩、酒精、水银、沸点



10万个为什么大全集》是作者:雅瑟 编著倾才力献的一部情节荡气回肠,扣人心弦的佳作